2022-04-06
To improve the efficiency of the motor, the essence is to reduce the loss of the motor. The loss of the motor is divided into mechanical loss and electromagnetic loss. For example, for an AC asynchronous motor, the current passes through the stator and rotor windings, which will produce copper loss and conductor loss, while the magnetic field in the iron. It will cause eddy currents to bring about hysteresis loss, high harmonics of the air magnetic field will generate stray losses on the load, and there will be wear losses during the rotation of bearings and fans.
To reduce the loss of the rotor, you can reduce the resistance of the rotor winding, use a relatively thick wire with low resistivity, or increase the cross-sectional area of the rotor slot. Of course, the material is very important. Conditional production of copper rotors will reduce losses by about 15%. The current asynchronous motors are basically aluminum rotors, so the efficiency is not so high.
Similarly, there is copper loss on the stator, which can increase the slot face of the stator, increase the full slot ratio of the stator slot, and shorten the end length of the stator winding. If a permanent magnet is used to replace the stator winding, there is no need to pass current. Of course, the efficiency can be obviously improved, which is the fundamental reason why the synchronous motor is more efficient than the asynchronous motor.
For the iron loss of the motor, high-quality silicon steel sheets can be used to reduce the loss of the hysteresis, or the length of the iron core can be lengthened, which can reduce the magnetic flux density, and can also increase the insulating coating. In addition, the heat treatment process is also critical.
The ventilation performance of the motor is more important. When the temperature is high, the loss will of course be large. The corresponding cooling structure or additional cooling method can be used to reduce friction loss.
High-order harmonics will produce stray losses in the winding and iron core, which can improve the stator winding and reduce the generation of high-order harmonics. Insulation treatment can also be performed on the surface of the rotor slot, and magnetic slot mud can be used to reduce the magnetic slot effect.